A Novel Synthesis of Vinylidene Diphosphine Complexes of Type $[M(CO)_4{Ph_2PC(=CH_2)PPh_2}]$, (M = W or Cr)

GARY R. COOPER, DAVID M. McEWAN and BERNARD L. SHAW*

School of Chemistry, The University, Leeds LS2 9JT, U.K.

Received October 30, 1982

Introduction

There is great interest in the coordination/organometallic chemistry generated by $Ph_2 PCH_2 PPh_2$ (dppm), e.g. this ligand forms bimetallic complexes with or without metal-metal bonds, 'A-frames' and many other types of complex [1-3]. In con-

*Author to whom correspondence should be addressed.

trast there has been very little done with substituted dppms of type $Ph_2PCHRPPh_2$ (R = alkyl, aryl or functional group) although one might anticipate interesting electronic and stereochemical effects due to the presence of the R group(s). We have shown that the benzoyl derivative [{W(CO)₄Ph₂PCH(COPh)-PPh₂}] undergoes a photochemically induced chelate ring expansion (4- to 6-membered) [4] and the corresponding hydrazone undergoes a thermal ring expansion, 4- to 7-membered [5]. We now report a simple synthesis of complexes of the new and reactive ligand tetraphenylvinylidene diphosphine, Ph₂-PC(=CH₂)PPh₂.

Results and Discussion

Although the anion $[Ph_2PCHPPh_2]^-$ is ambident and usually reacts with electrophiles to give mixtures [6] we have shown that when complexed to a Group VI metal carbonyl $[M(CO)_4(Ph_2PCHPPh_2)]^-$ [7], or platinum(II) di-iodide $[PtI_2(Ph_2PCHPPh_2)]^-$ [8], it reacts as a carbanion. We now find that treatment

Scheme 1. Chemistry related to the formation and reactions of the vinylidine diphosphine complexes $[M(CO)_4[Ph_2PC(=CH_2)-PPh_2]]$ (M = W or Cr).

The carbanions (1) were formed from $[M(CO)_4[Ph_2PCH_2PPh_2]]$ by treatment with LiBuⁿ/Me₂NCH₂CH₂NMe₂ in Et₂O for 2 hours as described previously [7].

(i) $MeOCH_2CI/THF/48$ hours/20 °C, M = W or Cr.

(ii) MeOCH₂Cl/C₆H₆/4 hours (Cr) or 6 hours (W) at ca. 80 $^{\circ}$ C.

(iii) MeLi/Et₂O for 24 hours at 20 °C, then MeOH added to give (4a): BuLi/n-hexane for 48 hours at 20 °C, then MeOH added to give (4b): similarly for the chromium complexes.

(iv) EtI/24 hours/20 $^{\circ}$ C gives (4a), n-C₅H₁₁I/48 hours/20 $^{\circ}$ C gives (4b).

(v) 70 fold excess of pyrrolidine in EtOH for 30 minutes at 20 °C.

0020-1693/83/0000-0000/\$03.00

© Elsevier Sequoia/Printed in Switzerland

Fig. 1. ¹H NMR spectrum of $[W(CO)_4 \{Ph_2PC(=CH_2)PPh_3\}]$ at 90 MHz over the range $\delta 4-8$, in CDCl₃ solution showing the 'N-doublet' separation of 49.5 Hz in the virtual triplet =CH₂ pattern (see text).

of the carbanions $[M(CO)_4(Ph_2PCHPPh_2)]^-$ (1) (M = Cr or W) with chloromethyl methyl ether at 20 °C gives the methoxymethyl derivatives [M(CO)₄- $\{Ph_2PCH(CH_2OMe)PPh_2\}\]$ (2) in good, ~60% yields, as orange crystalline solids: the corresponding reaction with molybdenum gave very dark products which could not be purified. However, similar treatment of these carbanions [M(CO)₄(Ph₂PCHPPh₂)]⁻⁻ with chloromethyl methyl ether at 80 °C for 4 hours (Cr), or 6 hours (W), gave the corresponding yellow, crystalline vinylidene complexes, [M(CO)₄ {Ph₂PC- $(=CH_2)PPh_2$] (3) in 68% (Cr) or 60% (W) yields (see Scheme 1). All these complexes were fully characterised by elemental analysis, mass spectrometry, IR spectroscopy and particularly by ³¹P-{¹H}, ¹H, and ¹H-{³¹P} NMR spectroscopy. A remarkable feature of the ¹H NMR spectra is the presence of a 'virtual triplet' with the extremely large N-doublet separation of ca. 50 Hz (see Fig. 1). This separation is equal to ${}^{3}J(P-C=C-H)$ (cis) + ${}^{3}J(P-C=C-H)$ (trans) which are both probably large and positive in sign. Other alkenylphosphines have large values for ³J(P-C=C-H) cis and trans and couplings are positive in sign [9, 10].

As might be expected the $CH_2=C$ double bond is activated by the $P_2M(CO)_4$ moiety: thus it readily undergoes Michael-type additions. Treatment of the vinylidene diphosphine tungsten complex, $[W(CO)_4-\{Ph_2PC(=CH_2)PPh_2\}]$ with methyl-lithium followed by methanol gives the ethyl-derivative $[W(CO)_4$ - $\{Ph_2PCHEtPPh_2\}]$, which we have previously synthesised by treating the carbanion $[W(CO)_4\{Ph_2PCH-PPh_2\}]^-$ with ethyl iodide [7]. Similarly, treatment of $[W(CO)_4\{Ph_2PC(=CH_2)PPh_2\}]$ with n-butyllithium, followed by methanol gives the n-pentyl derivative $[W(CO)_4\{Ph_2PCH(C_5H_{11})PPh_2\}]$ which we also synthesised by treating the anion, $[W(CO)_4-\{Ph_2PCHPPh_2\}]^-$ with n-pentyl iodide (see Scheme). We also find that this vinylidene complex $[W(CO)_4-\{Ph_2PC(=CH_2)PPh_2\}]$ readily reacts with pyrrolidine to give the adduct $[W(CO)_4\{Ph_2PCH(CH_2NC_4H_8)-PPh_2\}]$ in 93% isolated yield. Similar results were obtained with the chromium analogues.

Thus far we have not been successful in trying to convert the methoxymethyl derivative $[W(CO)_4$ - $\{Ph_2PCH(CH_2OMe)PPh_2\}]$ (2) into the vinylidene derivative $[W(CO)_4\{Ph_2PC(=CH_2)PPh_2\}]$ either by heat (refluxing toluene solution) or by treatment with acidic $(H_2SO_4/benzene)$ or basic $\{LiN(SiMe_3)_2\}$ reagents. In no case could any of the vinylidene complex be detected.

These vinylidene diphosphine derivatives contain an activated double C=C bond and are probably capable of many reactions in addition to those described above.

Acknowledgement

We thank the Science and Engineering Research Council for support.

References

- 1 M. P. Brown, R. J. Puddephatt, M. Rashidi and K. R. Seddon, J. Chem. Soc. Dalton Trans., 1540 (1978).
- 2 L. S. Benner and A. L. Balch, J. Am. Chem. Soc., 100, 6099 (1978).
- 3 D. M. Hoffmann and R. Hoffmann, *Inorg. Chem.*, 20, 3543 (1981) and references therein.
- 4 S. Al-Jibori, M. Hall, A. T. Hutton and B. L. Shaw, J. Chem. Soc. Chem. Commun., 1069 (1982).
- 5 S. Al-Jibori, W. S. McDonald and B. L. Shaw, J. Chem. Soc. Chem. Commun., 287 (1982).
- 6 K. Issleib and H. P. Abicht, J. Prakt. Chem., 312, 456 (1970).
- 7 S. Al-Jibori and B. L. Shaw, J. Chem. Soc. Chem. Commun., 286 (1982).
- 8 S. Al-Jibori and B. L. Shaw, Inorg. Chim. Acta Letters, 65, L123-124 (1982).
- 9 W. A. Anderson, R. Freeman and C. A. Reilly, J. Chem. Phys., 39, 1518 (1963).
- 10 Y. Y. Samitov, E. A. Berdnikov, F. R. Tantasheva, B. Y. Margulis and E. G. Kataev, *Zhur. Obschei Khim.*, 45, 2130 (1975).